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Abstract

The running of the coupling strength with energy is analysed for the SU(3), SU(2)

and U(1) sectors of the Standard Model, Minimal Supersymmetric Standard Model

(MSSM) and Extra Dimension extensions to the MSSM to determine whether the sec-

tors unify at high energy, admitting the possibility of a Grand Uni�ed Theory (GUT).

We �nd that the Standard Model does not admit uni�cation. The Minimal Supersym-

metric Standard Model admits a uni�cation point at an energy MGUT = 10(16.07±0.01)

GeV when the supersymmetry breaking scaleMSUSY = 10(3.37±0.01) GeV, in agreement

with previous papers. Adding compacti�ed extra dimensions to the MSSM reduces the

uni�cation energy by 3 orders of magnitude to ∼ 1013 GeV, irrespective of the number

of dimensions added; this value of MGUT is not consistent with proton decay, and

hence another mechanism (such as Kaluza-Klein selection rules) must be proposed to

allow this.
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1 Introduction

One of the greatest triumphs of 20th Century physics has been the Standard Model (SM).

In it, the principle of local gauge invariance has been used to show that electromagnetic,

strong and weak interactions can be modelled using the SU(3)×SU(2)×U(1) gauge groups

to spectacular accuracy [1, 2]. Despite these great successes, it has become evident

that the Standard Model does not describe a number of phenomena accurately, such as

the observations of neutrino oscillations [3], matter-antimatter asymmetry [4] and the

hierarchy problem [5]. As well as this, the somewhat large parameter space of the SM

and large di�erences in the magnitude of these parameters has led some to argue that the

theory is unnatural [6]. Due to these problems, it is reasonable to �nd an encompassing

theory that includes the Standard Model within it and treat the Standard Model as a low-

energy e�ective �eld theory, generalising to a more fundamental theory at higher energy.

To further fuel the hypothesis of a more fundamental theory, it has been widely noted

[7, 8] that the coupling strengths for the electromagnetic, strong and weak interactions

vary (�run�) depending on the energy scale, due to renormalisation. The running of these

couplings allows us to suggest that they would take the same value (�unify�) at a certain

energy scale. If this uni�cation exists then it admits the possibility of a Grand Uni�ed

Theory (GUT), capable of describing all three interactions of the SM as a single uni�ed

interaction at high energy. Thus, we can postulate that at this uni�cation scale the physics

associated with the `more fundamental theory' alluded to earlier becomes manifest.

One of the more popular theories for physics beyond the SM is the concept of super-

symmetry; in this theory, the inclusion of a boson-fermion symmetry allows us to correct

the hierarchy problem1. The most simple way of including supersymmetry in the SM is the

Minimal Supersymmetric Standard Model (MSSM) [10]. Supersymmetry is a `hot topic'

recently as its predictions of superpartner particles should be observed in the next few years

at the Large Hadron Collider [11].

As well as this, a number of groups have focussed on the role extra dimensions could

1More speci�cally, the MSSM re�nes the heirarchy problem into a �little hierarchy problem� [9].
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potentially play on Nature [12, 13]. The introduction of extra dimensions is a natural

extension of more fundamental theories, such as string theory [14]. This paper pays

particular attention to the use of compacti�ed extra dimensions - extra dimensions that

are only manifest at small distance scales - as it proposes uni�cation at intermediate mass

scales [15].

These theories are just some of a large number of GUTs that have been proposed [16];

all require a uni�cation point to exist, although how this uni�cation is broken is theory-

dependent.

This paper investigates the scales and conditions required to unify electromagnetism,

strong and weak interactions into a single GUT, paying particular attention to the SM,

MSSM and extensions to the MSSM that utilise compacti�ed extra dimensions. In Section

2 we outline how the process of renormalisation gives rise to running coupling. It also

details the computational methods used in determining how the couplings run, as well as

how various parameters in the theories are �xed during the investigation. Sections 3-5

then go into detail about how the couplings run in each theory as well as discussing the

implications of each. Finally, in Section 6 we draw conclusions from the entire investigation

and outline further work in the �eld.

In this paper natural units ~ = c = 1 are used throughout. The de�nition α = g2/4π

(which is analogous to the �ne structure constant in Quantum Electrodynamics) is also

used.

2 Running Coupling

2.1 Analytical Considerations

Almost all theories of interaction in particle physics admit solutions where in�nities become

problematic at high energy (also known as the ultraviolet region). This occurs usually

when one or more `loops' are added to a Feynman diagram; for example, the one-loop

contribution to the electron vertex in Quantum Electrodynamics (QED) diverges as the
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Figure 1: One-loop electron vertex: an example of a Feynman diagram that has a divergent

amplitude. Using regularisation and renormalisation this amplitude becomes �nite.

loop photon energy increases (see Figure 1).

In order to combat these anomalies, we use two mathematical tools. The �rst, regu-

larisation, introduces the concept of a regulator. At high energies, this regulator ensures

that the integral remains �nite, and in the low energy limit the regulator vanishes. There is

more than one scheme for regularisation and the choice of scheme is somewhat arbitrary,

depending on the theory [17]. In this paper will use two schemes - the modi�ed Minimal

Subtraction scheme (MS) [18] for the SM and Dimensional Regularisation (DR) [19] for

the MSSM.

Regularisation can still lead to divergent integrals; we therefore use it together with

the process of renormalisation. This process uses a scale symmetry argument to suggest

that the `bare' parameters used in equations are di�erent to values we determine from

experiment, and that they are related by an expression that depends on the energy scale

involved. In the case of electromagnetism, this has a physical argument: the bare charge

around, for example, an electron is screened by a cloud of net negative charge formed

from vacuum particle-antiparticle pairs being attracted to the electron; this increases its

e�ective interaction strength [20].

Using a procedure outlined by Bogoliubov and Shirkov [21], we can use regularisation

and renormalisation to ensure that all divergent integrals in our theory are �nite (assuming

our theory is renormalisable). As a result of this procedure, we �nd that the coupling

`constant' associated with the strength of a particular interaction is no longer constant,

but varies (�runs�) with energy. We can characterise this variation with the beta function:
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the strength of an interaction g at a certain scale µ is given by

β(µ) = µ
∂g

∂µ
. (1)

The beta function is dependent on the theory we consider, and provides us with a

di�erential equation that we can solve (computationally, or in some cases analytically) to

give the value of the coupling strength at a certain energy scale. It is more useful to have

an equation of the form

µ
d

dµ
α−1(µ) = . . . ,

(where α = g2/4π) which can be easily derived from Eq. 1. Equations of this form are

typically referred to as renormalisation group (RG) equations.

In the theories considered by this paper we will have three di�erential equations to solve,

for the SU(3), SU(2) and U(1) sectors respectively; we thus adopt an index notation

µ
d

dµ
α−1i (µ) = . . . , (2)

where i = 1, 2, 3 denotes the U(1), SU(2) and SU(3) sectors respectively. By solving

Eq. 2 at several energies we can determine how the couplings run with energy, as well as

whether the couplings unify at any point.

2.2 Computational Investigation

In this paper we solve RG equations of the form given in Eq. 2 computationally using two

di�erent integration methods: for more information, see Appendix A.

As with any series of �rst-order di�erential equations, we must de�ne initial conditions:

one for each di�erential equation. In this project, we focussed on two particular types of

initial conditions: the �rst, herein referred to as the forward propagation (FP) method,

�xes the initial values of α−1i (MZ) using data from the Particle Data Group [16] and

propagates forward from these values to determine the uni�cation point, if one exists.

We can de�ne the uni�cation point (MGUT, αGUT) as the energy scale µ and average
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coupling strength α(µ) that minimise

−→χ 2(µ) =
1

3

3∑
i=1

(
α−1i (µ)− α−1(µ)

σ[α−1i (MZ)]

)2
, (3)

where σ[α−1i (MZ)] is the error in α−1i at MZ, calculated in Appendix B. In this method,

we de�ne the value of −→χ 2 at the uni�cation point as −→χ 2min.
−→χ 2 gives a useful indicator of

how well uni�ed a model is: if −→χ 2min ≤ 1 then uni�cation has occurred within error.

The alternative set of initial conditions, herein referred to as backward propagation

(BP), �xes a uni�cation point (with uni�cation strength αGUT and uni�cation energy

MGUT) and propagates backwards from this value to MZ to determine how close the

couplings are to experimental values.

This change in initial conditions also changes how we quantise uni�cation:

←−χ 2 =
1

3

3∑
i=1

(
α−1i ,calc(MZ)− α−1i ,exp(MZ)

σ[α−1i ,exp(MZ)]

)2
. (4)

Here, all values of αi are evaluated at MZ. As with traditional χ2 analysis, we take the

di�erence of the theoretical predictions and experimental values, then divide by the error

in the experimental value. Although the initial conditions have changed, the uni�cation

condition ←−χ 2 ≤ 1 remains.

The majority of theories discussed in this paper result in running couplings that depend

on one or more free parameters: for example, in any BP analysis MGUT and αGUT are free

to vary. When a theory admits one free parameter we simply step across all admissible

values of the free parameter to �nd the minimum value of χ2 (i.e. gives best uni�cation).

When there is more than one free parameter we use a hybrid method of convergence -

which we entitled the Monte-Carlo Levenberg-Marquardt algorithm, or MCLM algorithm

- to determine quickly the values of the free parameters that give the minimum value of

χ2. (A full discussion of the MCLM algorithm is contained in Appendix C)

The FP method gives us a rough idea of whether the couplings will unify at high

energy. We can see that the FP method will always have two less free parameters than a
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BP method of the same model (MGUT and αGUT are added to the BP method); for this

reason, we expect ←−χ 2 < −→χ 2min; however, it should be noted that the BP method does

require uni�cation to be at least approximately found from a FP analysis - obviously it is

not reasonable to assume total uni�cation if the theory does not approximately unify!

All examples and graphs were written and produced in the Python programming lan-

guage, making heavy use of the module numpy [22] for array handling and manipulation,

scipy [22] for solving di�erential equations and pylab (also known as matplotlib) [23]

for plotting.

3 Standard Model (SM)

3.1 Theory

The Standard Model models three fundamental interactions using an SU(3)×SU(2)×U(1)

gauge groups and the principle of local gauge invariance to form a quantum �eld theory

[24]. For each of these interactions we associate a coupling strength to it. We also

suggest that there is no new physics in the `desert' between our current experimental

bounds (around 103 GeV) and higher energy.

The SM is renormalisable [25], and so we are able to determine a beta-function for it.

We repeat the procedure outlined by Amaldi et al. [7]: we de�ne the couplings as

α−11 =
3

5

cos2 θW
αEM

, α−12 =
sin2 θW
αEM

, α−13 =
1

αs
(5)

where αEM, sin
2θW and αs are the �ne-structure constant, weak mixing angle and strong

coupling constant respectively (all experimentally determined parameters), and we include

the 3/5 factor in the de�nition of α−11 to ensure normalization at the uni�cation point2.

2Speci�cally, we require that the generators of the SU(2) and U(1) sectors have equal traces due to

them both lying in a single representation of a (simple) group: Tr( 14Y
2) = Tr((T 3)2), where Y and T 3 are

the U(1) and SU(2) generators respectively; as Tr( 14Y
2)/Tr((T 3)2) = 5

3 , we renormalise αEM by this factor

and the requirement is satis�ed [26].
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Using the world-averaged values from the Particle Data Group [16]

α−1EM(MZ) = 127.91± 0.02

sin2 θW (MZ) = 0.2312± 0.0002 (6)

αs(MZ) = 0.119± 0.002

we �nd

α−11 (MZ) = 59.00± 0.03 , α−12 (MZ) = 29.52± 0.03 , α−13 (MZ) = 8.3± 0.1 (7)

where the errors on these parameters are propagated using the procedure in Appendix B.

We consider one- and two-loop contributions to the beta function, corresponding to the

contributions of Feynman diagrams with one loop and two loops within them respectively.

Using these de�nitions, we �nd that [7]

µ
d

dµ
αi(µ) =

1

2π

(
bSMi +

3∑
j=1

bSMi j
4π

αj(µ)

)
α2i (µ) .

This is rearranged to give

µ
d

d(lnµ)
α−1i (µ) = −

1

2π

(
bSMi +

3∑
j=1

bSMi j
4π

αj(µ) +O(α2j )

)
, (8)

where we adopt �big O� notation to denote higher order terms. Although the form is similar

for all three sectors of the model, the constants (bSMi and bSMi j at one- and two-loop level

respectively) are not: for the SM [27],

bSMi =

 0

−22
3

−11

+ NFam

434
3
4
3

+ NHiggs

 1
10
1
6

0


bSMi j =

0 0 0

0 −136
3

0

0 0 −102

+ NFam

1915 3
5

44
15

1
5

49
3

4
11
30

3
2

76
3

+ NHiggs

 9
50

9
10

0
3
10

13
6

0

0 0 0
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For the SM, we set the number of families of matter NFam = 3 and the number of Higgs

doublets NHiggs = 1:

bSMi =

 41
10

−175
6

−7

 , bSMi j =

19950 27
10

44
5

9
10

35
6

12
11
10

9
2
−26

 (9)

It is noted that there are no free parameters in this theory: because of this, we cannot

`�ne-tune' the theory to give uni�cation - it will either give uni�cation or it will not.

3.2 Results and Discussion

(a) (b)

Model MGUT [log(GeV)] α−1GUT
−→χ 2(MGUT)

1-loop (a) 13.63 40.94 2447

2-loop (b) 13.60 40.89 1878

Figure 2: Graphs of α1 (red line, top at µ = MZ), α2 (green) and α3 (blue, bottom at

µ = MZ) in the SM obtained by solving Eq. 8 with the forward propagation (FP) method,

together with a table detailing the results of quantising the amount of uni�cation, as

de�ned in the text. All values in the table are to 4 signi�cant �gures. (a) Considering

1-loop contributions to the SM beta function (b) Considering 1- and 2-loop contributions.

As can be seen from the graphs and values of −→χ 2(MGUT), no uni�cation point exists for

the SM up to 2 loops.

The FP method was used to solve Eq. 8; Figure 2a shows the results of considering

only one-loop contributions (terms involving bSMi only), and Figure 2b shows the results of

considering one- and two-loop contributions. Also included in Figure 2 is a table showing

the analysis of uni�cation (as de�ned in Eq. 3).
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We can conclude from Figure 2 that the SM does not admit uni�cation by a large

margin (−→χ 2 � 1). Inclusion of higher-order terms to the beta function would not improve

uni�cation, as the e�ect of each higher order decreases; one- and two-loop contributions

are essentially the only contributions worth considering [7]. This also implies that using

the BP method for the SM will not give reasonable results, as the method requires at least

approximate uni�cation to begin with. Obviously, if we consider uni�cation to be true we

require physics beyond the SM to explain it.

4 Minimal Supersymmetric Standard Model (MSSM)

4.1 Theory

Supersymmetry is the postulation that there exists a transformation Q that turns a bosonic

state into a fermionic state:

Q|Boson〉 = |Fermion〉 , Q|Fermion〉 = |Boson〉

As a corollary of this transformation, each particle in the Standard Model (quark, lepton or

gauge boson) gains a superpartner that it transforms into via Q (squark, slepton, gaugino),

existing in a supermultiplet of Q [10]. If no additional supermultiplets are included, we

arrive at the Minimal Supersymmetric Standard Model (MSSM).

No conclusive evidence of supersymmetry has been found at low energy3; we therefore

need to provide a way of breaking supersymmetry at low energy to incorporate this. We

introduce this with a supersymmetry breaking scale MSUSY, which must be above our

experimental bounds. Below MSUSY we assume no supersymmetry and that the running of

the coupling is governed by the SM beta function, and above it we use the beta function

for the MSSM4.

3Evidence of supersymmetry is predicted at the Large Hadron Collider, at energies just above our current

experimental bounds [11].
4We expect a more subtle transition into supersymmetry; this is a simpler way of introducing supersym-

metry and we believe that this retains the relevant physics [7].
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Despite the inclusion of a number of new particles the di�erences between the SM and

the MSSM are subtle when determining the running of the couplings. The couplings are

o�set very slightly, due to the di�erence in renormalisation scheme [7]:

1

αDRi
=

1

αMSi
−

Ci
12π

,

where Ci are the quadratic Casimir coe�cients of each group (Ci = N for SU(N) and

Ci = 0 for U(1)).

The RG equations decribing the three interactions retain the same form in the MSSM

[27,28]:

µ
d

d(lnµ)
α−1i (µ) = −

1

2π

(
bMSSMi +

3∑
j=1

bMSSMi j

4π
αj(µ) +O(α2j )

)
(µ ≥ MSUSY) (10)

Only the coe�cients bMSSMi and bMSSMi j change:

bMSSMi =

 0

−6

−9

+ NFam

2

2

2

+ NHiggs

 3
10
1
2

0


bMSSMi j =

0 0 0

0 −24 0

0 0 −54

+ NFam

3815 6
5

88
15

2
5

14 8
11
15

3 68
3

+ NHiggs

 9
50

9
10

0
3
10

7
2

0

0 0 0



In order to maintain the boson-fermion symmetry in the MSSM, we require a new Higgs

doublet [10]; hence, we use NHiggs = 2, as well as NFam = 3 as in the SM:

bMSSMi =

 33
5

1

−3

 , bMSSMi j =

19925 27
5

88
5

9
5

25 24
11
5

9 14

 (11)

We must also de�ne new initial conditions for this system of di�erential equations: we

introduce the constraint that α−1i (MSUSY) must be the same for both the SM (Eq. 8) and

MSSM (Eq. 10) beta functions.

Higgs Yukawa couplings are known to contribute to the beta function at two-loop level:
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however, it has been noted that the e�ect of these couplings has little e�ect on the running

of the couplings, and adds extra parameters to the theory [29]; as such, our treatment

ignores Yukawa coupling.

MSUSY is the single free parameter for this theory (using the FP method). By its

de�nition we can set limits on its value: as we have not experimentally found evidence for

supersymmetry at current particle accelerators, we know that MSUSY > 103 GeV. If we use

the BP method we have three free parameters (MSUSY, MGUT and α−1GUT) and therefore

require a multidimensional convergence algorithm to �nd the optimal values. We hence

solve Eq. 10 using the MCLM algorithm, as discussed earlier in Section 2.2 and in Appendix

C.

We can constrain MGUT and αGUT by requiring they do not violate the current exper-

imental observations on proton decay; in the MSSM, the proton lifetime τp is related to

MGUT and αGUT by [7]

τp ≈
1

α2GUT

M4GUT
M5p

. (12)

Using data from the Particle Data Group [16],

Mp = 0.93827201 GeV , τp > 2.1× 1029 years ,

this implies that

α−1GUTM
2
GUT >

√
τpM5p ⇒ α−1GUTM

2
GUT > 1.08× 1030 GeV2 (13)

4.2 Results and Discussion

As done with the SM, Eq. 10 was solved using the FP method. The value of MSUSY

was set to the value at which −→χ 2(MGUT) was minimised (i.e. gave the best uni�cation).

The results of this analysis are shown in Figure 3: Figure 3a shows a 1-loop analysis (only

considering bMSSMi terms in Eq. 10) and Figure 3b shows a 2-loop analysis (considering both

bMSSMi and bMSSMi j terms). A table of values corresponding to the minimum of −→χ 2(MGUT)
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(a)

(b)

Model MSUSY [log(GeV)] MGUT [log(GeV)] α−1GUT
−→χ 2(MGUT)

1-loop (a) 0 16.3 24.2 0.960

2-loop (b) 3.4± 0.1 16.1 25.6 0.0206

Figure 3: Plot of α1 (red line, top at µ = MZ), α2 (green) and α3 (blue, bottom at

µ = MZ) in the MSSM obtained by solving Eq. 10 with the forward propagation (FP)

method, together with a table detailing the results of quantising the amount of uni�cation,

as de�ned in the text. The value of MSUSY (dashed vertical line, Figure 3b) was set to

minimise the value of −→χ 2(MGUT) . All values except MSUSY in the table are to 3 signi�cant

�gures when MSUSY takes its central value. (a) Considering 1-loop contributions to the

MSSM beta function (b) Considering 1- and 2-loop contributions. Experimental errors are

shown as lightly shaded regions around the central value. It is noted that that the 1-loop

value for MSUSY is unphysical - see text for more details.
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(a) (b)

(c)

Figure 4: Surfaces showing the variation in ←−χ 2 with respect to the free parameters α−1GUT,

MGUT and MSUSY involved in the BP method of solving the two-loop MSSM beta function.

In each of the plots one of the parameters is �xed to the values given in Figure 5 and the

other two are are allowed to vary. (a) α−1GUT �xed, (b) MGUT �xed, (c) MSUSY �xed. The

contour (black line) encloses the area where←−χ 2 < 1. The minimum values of←−χ 2 in these

plots are limited by the plots' resolution: in fact, ←−χ 2 → 0 (see the text and Figure 5 for

more details).

is also found in Figure 2.

At both one- and two-loop contributions the MSSM uni�es (−→χ 2 < 1) at an energy

scale ∼ 1016 GeV, well within experimental bounds from proton decay. However, at 1-loop

best uni�cation is found when MSUSY = 0: this is obviously an unphysical result, as we do

not see any experimental signatures of supersymmetry at our current experimental energy

ranges. The two-loop analysis heals our problem by placing MSUSY at an energy scale just

outside of our current experimental limits: it is anticipated that the Large Hadron Collider

at CERN will address the energy range around the value of MSUSY predicted here [30,31].

As uni�cation occurs in both FP analyses (within tolerance: −→χ 2(MGUT) < 1), it is

reasonable to use the BP method. Figure 4 shows how the value of←−χ 2 varies with respect

15



MSUSY [GeV] MGUT [GeV] α−1GUT
←−χ 2

10(3.37±0.01) 10(16.07±0.01) 25.60± 0.02 < 0.01

Figure 5: Plot of α1 (red line, top at µ = MZ), α2 (green) and α3 (blue, bottom at

µ = MZ) in the MSSM using the backward propagation (BP) method, and a table of

parameters used to produce the plot. MSUSY (dashed vertical line), MGUT and α−1GUT are

allowed to vary to minimise ←−χ 2: the values giving a minimum ←−χ 2 are shown in the table

and plotted. Errors were calculated by minimising |←−χ 2 + 1|, leaving all but the parameter

in question �xed. The value of ←−χ 2 in the table is the value determined when the central

values of MSUSY, MGUT and α−1GUT are taken to 2 decimal places; by specifying more, ←−χ 2
can be as low as 10−12: see text for details.

to each of the free parameters MSUSY, MGUT and α−1GUT, and Figure 5 shows the results of

minimising ←−χ 2 using the MCLM algorithm.

As we have as many free parameters as equations (3), we can obtain perfect agreement

with experimental results - we have only reported ←−χ 2 < 0.01 due to error bars, but from

further analysis this value can be lower: for example, when

MSUSY = 103.36825754 GeV , MGUT = 1016.07515093 GeV , α−1GUT = 25.59902942 ,

⇒←−χ 2 ∼ 10−12 .

In theory,←−χ 2 can be as close to 0 as we require. Despite this `under-constraint', The values

for the free parameters are in agreement with the FP analysis, within error: this further

suggests that our analysis is not �awed, as now two di�erent methods of determining
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parameter values have arrived at similar values. The BP analysis has also allowed us to

further constrain the values of each of the parameters with an error, calculated from χ2

analysis; a summary of these values and errors is in Figure 5.

5 Extra Compacti�ed Dimensions

5.1 Theory

It has been postulated that the (3+1)-dimensional spacetime we naturally experience could

be a projection of a higher-dimensional spacetime [12, 13]. This scenario is often useful

when trying to unify gravitation with the other three forces of Nature - for example, a theory

originally postulated by Kaluza and Klein [32] states that by extending general relativity

to a 5-dimensional spacetime the equations decompose to the Einstein �eld equations

and Maxwell's equations5 in (3+1)-dimensional spacetime. As well as this, the concept of

extra dimensions naturally arises from string theory [14]. By incorporating a Grand Uni�ed

Theory into a theory that includes gravity we would arrive at a �Theory of Everything�,

capable of describing the four fundamental forces (and, by corollary, the vast majority

of physics) in terms of a single set of equations. This is obviously a desirable outcome

for physicists, which is why the pursuit of a Theory of Everything (with or without extra

dimensions) has been ongoing6.

The way extra dimensions are incorporated into a model is model-dependent7: Kaluza

and Klein initially postulated that any extra dimensions would be compacti�ed into a circle

(equivalent to the U(1) gauge group) with a small characteristic radius R and characteristic

energy µ0 = 1/R. At energies below µ0 the e�ect of extra dimensions would not be

manifest, but above µ0 new physics as a result of these extra dimensions could occur. As

5The original Kaluza-Klein theory only attempted to unify gravity and electromagnetism; it has since

been extended to try and incorporate the other forces.
6Several books are entitled `A Theory of Everything', with varying degrees of eccentricity.
7A recent and popular paper by Arkani-Hamed, Dimopolous and Dvali [12] suggests that the Standard

Model is con�ned to a 4-dimensional membrane of a higher-dimensional `bulk'. This setup solved the

hierarchy problem and also postulated the possibility of microscopic black hole production at the Large

Hadron Collider; however, recent results from the experiment severely constrain the possibility of this theory

being correct [33].
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such, we treat µ0 - much in the same way as we treated MSUSY in Section 4 - as the scale

above which new physics occurs.

The inclusion of extra compacti�ed dimensions admits the possibility of standing waves

(modes) in these extra dimensions. We can assign a mass mn = n/R to each of these

modes. As the notation previous suggests, an in�nite number of these modes exist: this

leads to an in�nite Kaluza-Klein tower of states

m2n = m20 +

δ∑
i=1

n2i
R2

where δ = D− 4 denotes the number of extra dimensions (and we have assumed they are

all compacti�ed to a radius R) and n can take any positive integer value.

The in�nite nature of the Kaluza-Klein towers makes this model non-renormalisable. A

paper by Dudas, Dienes and Gherghetta [15] remedied this issue by assuming contributions

from masses larger than the scale of interest are ignorable. This leads to an approximately

renormalisable theory, upon which calculations can be done. The e�ect of these extra

dimensions on the running of the coupling for the MSSM with extra dimensions (herein re-

ferred to as the ED-MSSM) to one-loop level was also calculated in the Dudas, Dienes and

Gherghetta paper, and we follow their approach here: for δ extra dimensions compacti�ed

on a radius R = 1/µ0,

α−1i (µ) = α−1i (µ0)−
bMSSMi − b̃i

2π
ln

(
µ

µ0

)
−
b̃iXδ
2πδ

[(
µ

µ0

)δ
− 1

]
(µ ≥ µ0) (14)

where

Xδ =
2πδ/2

δΓ (δ/2)

and Γ (x) is the Euler gamma function. The new coe�cients b̃i are modi�ed versions of

bMSSMi , altered by the inclusion of Kaluza-Klein mass states:

b̃i =

 3
5

−3

−6
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We have implicitly assumed our initial conditions in Eq. 14; we calculate α−1i (µ0) using

the MSSM (Eq. 10), and by inspection we see that all other terms vanish in Eq. 14 at

µ = µ0.

µ0 is a free parameter of this theory. As there has been no experimental evidence of

compacti�ed extra dimensions8, we can assume that µ0 is greater than current experimen-

tal bounds. As well as this, we constrain µ0 to be less than the value for MGUT in the last

section: if µ0 > MGUT, our analysis would not be any di�erent from the last section's as

the MSSM would unify the couplings before extra dimensional e�ects would occur.

5.2 Results and Discussion

Figure 6: Plot of α1 (red line, top at µ = MZ), α2 (green) and α3 (blue, bottom at

µ = MZ) in the ED-MSSM with 1 extra dimension, with µ0 = 5 GeV (vertical dashed line)

and MSUSY = 0 implied. Although it looks like the couplings unify, when zooming into the

uni�cation area (inset graph) the uni�cation is not within error. Also, −→χ 2(MGUT) = 659,

proving uni�cation does not exist at this value of µ0.

Figure 6 reproduces a �gure in Dudas, Dienes and Gherghetta by �xing µ0 = 5 GeV.

It is hinted in the paper that the uni�cation at this energy is approximate, but still allows

the possibility of such 'low-energy' uni�cation. By `zooming' into the area of uni�cation

8The discrete spectrum of Kaluza-Klein modes would be an experimental signature. for more experimental

signatures, see [34]
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we �nd that the couplings do not unify within error, and that the possibility of uni�cation

is highly unlikely. Furthermore, a value of −→χ 2(MGUT) = 659 provides quantitative proof

that uni�cation at this energy is not possible.

µ0 [log(GeV)] MGUT [log(GeV)] α−1GUT
−→χ 2(MGUT)

15.8± 0.2 16.5 25.2 1.92× 10−3

Figure 7: Plot of α1 (red line, top at µ = MZ), α2 (green) and α3 (blue, bottom at

µ = MZ) in the ED-MSSM with 1 extra dimension, produced by allowing µ0 (dashed

vertical line) to vary and minimising −→χ 2(MGUT), together with a table of values used to

produce the plot. All values except µ0 in the table are to 3 signi�cant �gures when µ0
takes its central value. Experimental errors are shown as lightly shaded regions around the

central value.

To see which values of µ0 do admit uni�cation, the value of µ0 was allowed to vary and

−→χ 2(MGUT) was minimised: the results of this analysis are found in Figure 7. As can be

seen from the �gure, uni�cation occurs at similar energies to those of the normal MSSM,

although the uni�cation scale is actually pushed to higher energy.

In the paper by Dudas, Dienes and Gherghetta supersymmetry is assumed to be man-

ifest at low energy (i.e. MSUSY ≤ MZ). Although this was the conclusion for the 1-loop

MSSM (Figure 3a), it is reasonable to suggest that MSUSY is another free parameter of

this theory. We therefore allowedMSUSY to vary as well as µ0 (still minimising −→χ 2(MGUT));

the results of this analysis are shown in Figure 8. From our analysis we see that the 1-loop

MSSM gave an unphysical result whenMSUSY was the only parameter to freely vary (Figure

3a), but when extra dimensions are added to the theory the value of MSUSY takes a value
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MSUSY [log(GeV)] µ0 [log(GeV)] MGUT [log(GeV)] α−1GUT
−→χ 2(MGUT)

3.38± 0.04 12.53± 0.06 13.5 33.6 0.0291

Figure 8: Plot of α1 (red line, top at µ = MZ), α2 (green) and α3 (blue, bottom at

µ = MZ) in the ED-MSSM with 1 extra dimension, allowing both MSUSY and µ0 (dashed

vertical lines) to vary and minimising −→χ 2(MGUT), together with a table of values for which
−→χ 2(MGUT) is minimised. All values except MSUSY and µ0 in the table are to 3 signi�cant

�gures when MSUSY and µ0 take their central values. Experimental errors are shown as

lightly shaded regions around the central value.

similar to our two-loop MSSM (Figures 3b and 8).

The analysis also shows that the uni�cation scaleMGUT has been lowered by 3 orders of

magnitude, down to ∼ 1013 GeV. This value predicts a lower value for the proton lifetime

than experimental measures allow (See Eq. 13). As postulated by Dudas, Dienes and

Gherghetta, the inclusion of higher dimensions could allow a way of suppressing proton

decay; for instance, if we impose Kaluza-Klein selection rules (e.g. allowing only odd

Kaluza-Klein excitations for a particular particle) then we can suppress proton decay and

keep the lower value for MGUT [15].

The analysis has focussed on the addition of a single extra dimension only. The inclusion

of more than one extra dimension does not alter values such as MGUT and α−1GUT, as is

demonstrated in Figure 9; for this reason, our analysis is independent of the number of

extra dimensions and applies to any δ > 0. For this reason, if the ED-MSSM is the correct

theory to describe Nature, other analysis would be required to determine the number of

extra dimensions that exist.
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Figure 9: Plot of log(MGUT) against α−1GUT, found by varying log(µ0) (which is proportional

to α−1GUT). For this plot, MSUSY = 0. This plot is independent of the number of extra

dimensions δ.

6 Conclusions

This report has taken a brief tour of some of the more prominent theoretical models in

particle physics and determined whether each theory admits uni�cation, and hence holds

the possibility of becoming a Grand Uni�ed Theory (GUT).

The Standard Model (SM) was found to give no uni�cation, even when higher-order

contributions were added to the beta function. This result showed that either uni�cation is

not a pursuable goal or that the SM must be extended with new physics to allow uni�cation.

Given that evidence already exists that the SM does not explain several physical phenomena

(and that this report would be much shorter if we hadn't), we decided to pursue alternative

theories.

The Minimal Supersymmetric Standard Model (MSSM) extends the SM by enforcing

a transformation that transforms bosons into fermions and vice versa. This alteration

doubles the number of particles in the model, but the beta function remains the same

form - only constant factors are altered. The change in constants result in the MSSM

unifying: a best-�t method arrived at (Figure 5):
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MSUSY = 10(3.37±0.01) GeV

⇒ MGUT = 10(16.07±0.01) GeV , α−1GUT = 25.60± 0.02 , (←−χ 2 < 0.01) .

The values determined are within the limits set by experimental bounds such as the proton

decay lifetime and the maximum collider energy obtained so far, and due to overconstraint

←−χ 2 can be made to be as low as ∼ 10−12. It is interesting to note that the value of MSUSY

is within the energy range due to be explored by the Large Hadron Collider (LHC), so it is

reasonable to suggest from this analysis that supersymmetry signals are to be discovered

at the LHC if the MSSM is correct.

The e�ect of compacti�ed extra dimensions on the MSSM (together known as the

ED-MSSM) were found to be not as important as �rst reported by Dudas, Dienes and

Gherghetta, despite the beta function gaining an extra `power law' term. By allowing the

compacti�ed dimensions' radius R = 1/µ0 to vary, we found that the ED-MSSM uni�es

best when (Figure 7)

µ0 = 10(15.8±0.2) GeV

⇒ MGUT ≈ 1016.5 GeV , α−1GUT ≈ 25.2 , (−→χ 2 = 1.92× 10−3) .

The above analysis was conducted using an `always there' supersymmetry breaking scale

MSUSY = 0; this is not physical, otherwise evidence of supersymmetry would have been

found in other particle detectors. WhenMSUSY was also allowed to vary, the values obtained

were rather di�erent (Figure 8):

µ0 = 10(12.53±0.06) GeV , MSUSY = 10(3.38±0.04) GeV

⇒ MGUT ≈ 1013.0 GeV , α−1GUT ≈ 33.6 , (−→χ 2 = 0.0291) .

We note that MSUSY agrees with the value determined in the MSSM, suggesting that even

if supersymmetry was discovered at the LHC it would be di�cult to determine if extra

dimensions exist without alternative evidence. The uni�cation energy scale MGUT is below

the experimental threshold for proton decay: another mechanism, such as Kaluza-Klein

selection rules, is required to allow the uni�cation scale to be this low. We also note that
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our analysis is independent of the number of extra dimensions added to the MSSM (Figure

9).

Although we have provided a thorough analysis of the ED-MSSM, the analysis was

done at one-loop; it would be interesting to see whether the analysis alters signi�cantly if

two-loop contributions are added (which, in the case of the MSSM, raised MSUSY to scales

just beyond our current experimental bounds: see Figure 3). This is a very complicated

analysis, as each of the couplings will couple to the other two as shown e.g. in the

two-loops terms of Eq. 10.

As well as this, using the BP method on the ED-MSSM could yield more accurate

values on µ0 and MSUSY; however, it is worth noting that we have 4 degrees of freedom

and three equations, leading to the possibility that the problem is overconstrained.

A number of theories beyond the Standard Model allow for uni�cation; at what energy

that uni�cation occurs is dependent on the theory, but it is safe to assume that the

energy scale will not be experimentally obtainable in the current or next generation of

particle colliders. As such, it is tentative to assume that we will not �nd new physics

in the `desert' between our currently attainable energy scale and the uni�cation scales

hypothesised by these theories. If there really is no new physics at these energy scales,

the next step is to incorporate gravity into a Grand Uni�ed Theory to give a Theory of

Everything. Based on the investigations presented here, an extra-dimensional extension

to the Minimal Supersymmetric Standard Model could potentially be the �rst step to a

Theory of Everything: however, experimental results at the Large Hadron Collider should

determine whether supersymmetry is correct or whether a new description of Nature is

required.

Acknowledgements

The author would like to thank his supervisor Dr. Chris Maxwell for his invaluable time

and guidance.

24



References

[1] P. S. Wells, Experimental Tests of the Standard Model, Eur. Phys. J. C 33, S1

(2004), pp. 5-20

[2] A. Olchevski, M. Winter, High Precision Tests of the Standard Model and Deter-

mination of the Top Quark and Higgs Boson Masses, C. R. Physique 3 (2002), pp.

1183-1191

[3] M. D. Messier, Review of Neutrino Oscillation Experiments, Proceedings of the Flavor

Physics and CP Violation Conference, Vancouver (2006)

[4] E. Saether, The Mystery of the Matter Asymmetry, Beam Line 26, SLAC (1996)

[5] M. C. Brak, The Hierarchy Problem in the Standard Model and Little Higgs Theories,

Masters Thesis, NIKHEF (2004)

[6] J. Hewett, Non-SUSY Physics Beyond the Standard Model, Presentation at Pre-

SUSY '10, Physikalische Institut, Bonn (2010); available online at http://susy10.

uni-bonn.de/presusy.php

[7] U. Amaldi, W. de Boer, P. H. Frampton, H. Fürstenau and J. T. Liu, Consistency

Checks of Grand Uni�ed Theories, Phys. Lett. B 281 (1992), pp. 374-382

[8] G.M. Prosperia, M. Racitia and C. Simolo, On the Running Coupling Constant in

QCD, Progress in Particle and Nucl. Phys. 58, 2 (2007), pp. 387-438

[9] K. S. Babu, I. Gogoladze, M. U. Rehman and Q. Sha�, Higgs Boson Mass, Sparticle

Spectrum, and the Little Hierarchy Problem in an Extended MSSM, Phys. Rev. D

78, 055017 (2008)

[10] S. P. Martin, A Supersymmetry Primer, arxiv:hep-ph/9709356v5 (2008)

[11] P. Konar, K. T. Matchev, M. Park and G. K. Sarangi, How to Look for Supersymmetry

Under the LHC Lamppost, Phys. Rev. Lett. 105, 221801 (2010)

[12] N. Arkani-Hamed, S. Dimopolous and G. Dvali, The Hierarchy Problem and New

Dimensions at a Millimeter, Phys. Lett. B 429, 3-4 (1998), pp. 263-272

[13] L. Randall and R. Sundrum, Large Mass Hierarchy from a Small Extra Dimension,

Phys. Rev. Lett. 83, 3370-3373 (1999)

[14] J. G. Polchinski, String Theory, CUP (2003), Section 10.6: Superstring Theories in

10 Dimensions

[15] K. R. Dienes, E. Dudas and T. Gherghetta, Extra Spacetime Dimensions and Uni�-

cation, Phys. Lett. B 436, 55 (1998)

[16] K. Nakamura et al. (Particle Data Group), 2010 Review of Particle Physics, J. Phys.

G 37, 075021 (2010), Section 15: Grand Uni�ed Theories

[17] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Perseus

Books (1995), pp. 248-249

25



[18] W. A. Bardeen, A. Buras, D. Duke and T. Muta, Deep-Inelastic Scattering Beyond

the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18 (1978),

pp. 3998-4017

[19] I. Antoniadis, C. Kounnas, K. Tamvakis, Simple Treatment of Threshold E�ects,

Phys. Lett. B 119 (1982), pp. 377-380

[20] A. E. Blechman, Renormalization: Our Greatly Misunderstood Friend, Presentation

at Johns Hopkins University, Baltimore (2002); available online at http://www.pha.

jhu.edu/~blechman/papers/renormalization/renormalization.html

[21] N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields,

Wiley (1959), Chapter VIII: The Renormalisation Group

[22] numpy and scipy are available from http://www.scipy.org/

[23] J. Hunter, D. Dale, M. Droettboom, matplotlib - python plotting, http://

matplotlib.sourceforge.net/

[24] F. E. Close, I. G. Halliday, T. Jones and C. Maxwell, Proceedings of the School for

Young High Energy Physicists, Rutherford Appleton Laboratory, Oxford (1993)

[25] H. Arason, D. J. Castano, B. Keszthelyi, S. Mikaelian, E. J. Piard, P. Ramond, and B.

D. Wright, Renormalization-Group Study of the Standard Model and its Extensions:

I. The Standard Model, Phys. Rev. D 46 (1992), pp. 3945

[26] H. Georgi, H. R. Quinn, S. Weinberg, Hierarchy of Interactions in Uni�ed Gauge

Theories, Phys. Rev. Lett. 33 (1984), pp. 451-454

[27] M. B. Einhorn and D. R. T. Jones, The Weak Mixing Angle and Uni�cation Mass in

Supersymmetric SU(5), Nucl. Phys. B 196 (1982), pp. 475-488

[28] D. J. Castano, E. J. Piard and P. Ramond, Renormalization-Group Study of the

Standard Model and its Extensions: II. The Minimal Supersymmetric Standard Model,

Phys. Rev. D 49 (1994), pp. 4882-4901

[29] G. Amelino-Cameliab, D. Ghilencea and G. G. Ross, The E�ect of Yukawa Couplings

on Uni�cation Predictions and the Non-Perturbative Limit, Nuc. Phys. B 528, 1-2

(1998), pp. 35-58

[30] ATLAS Collaboration, ATLAS Detector and Physics Performance, Technical Design

Report, Vol. II, CERN-LHCC-99-15 (1999)

[31] CMS Collaboration, CMS, the Compact Muon Solenoid: Technical Proposal, CERN-

LHCC-94-38 (1994)

[32] P. S. Wesson, Space-Time-Matter: Modern Kaluza-Klein Theory, World Scienti�c

(1998), Chapter 1.5: Kaluza-Klein Theory

[33] The CMS Collaboration, Search for Microscopic Black Hole Signatures at the Large

Hadron Collider, Phys. Lett. B, 697, 5 (2011), pp. 434-453

26



[34] A. Mück, The Standard Model in 5D: Theoretical Consistency and Experimental

Constraints, Doctoral Thesis, Bayerischen Julius-Maximilians-Universität Würzburg

(2004)

27



Appendices

A Comparison of Integration Methods

In this study two methods were used to integrate di�erential equations. The �rst method

was based on Taylor series (and is herein referred to as the Taylor method): The Taylor

series to α−1i (µ) is approximated, and then we step along the function using the de�nition

of dα−1i /dµ from Eq. 2. Explicitly, the formula used is

α−1i (µ+ ∆µ) = α−1i (µ) +

(
dα−1i
dµ

)
∆µ .

The second method used the odeint routine of the Python scipy module; this routine

uses a mixture of Adams and BDF methods to determine the solutions (see, for example:

Astic, Bahain and Jerosolimski, The mixed Adams-BDF Variable Step Size Algorithm to

Simulate Transient and Long-Term Phenomena in Power Systems, IEEE Transactions on

Power Systems 9, 2 (1994)).

(a) (b)

Figure 10: Comparison of integration method stability as parameters become unsolvable.

(a) Taylor method. (b) odeint routine. White areas denote where each method could not

solve for the given parameters. As can be seen from the plots the Taylor method provides

no false values if it is given unsolvable parameters, whereas the odeint routine sometimes

incorrectly `solves' unsolvable parameters.

Both methods produced similar numerical results in the vast majority of cases. The

Taylor method was more stable (see Figure 10), but took longer to calculate than the

odeint routine. Because of their features, both methods were used in the study: when

speed was required and the parameters used were well away from the unsolvable boundary,

the odeint method was used; otherwise, the Taylor method was used.
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B Error Propagation

The couplings in the Standard Model (SM) are given by (Eq. 5)

α−11 =
3

5

cos2 θW
a

, α−12 =
sin2 θW
a

, α−13 =
1

as

and using the world-averaged values (Eq. 6)

a−1(MZ) = 127.91± 0.02

sin2 θW (MZ) = 0.2312± 0.0002

as(MZ) = 0.119± 0.002

we can determine the running of the couplings. Using σ[x ] to denote the error in x , the

errors in a function f (x1, x2, ..., xn) has error

σ[f (x1, x2, ..., xn)] =

√√√√ n∑
i=1

(
∂f

∂xi

)2
σ[xi ]2

In this case, the errors in each α−1i are given by

σ[α−11 ] =

√√√√(3a−1

5

σ[sin2 θW ]√
sin2 θW

)2
+

(
α−11 σ[a−1]

a−1

)2

σ[α−12 ] = α−12

√(
σ[sin2 θW ]

sin2 θW

)2
+

(
σ[a−1]

a−1

)2
σ[α−13 ] =

α−13
as
σ[as ]

where σ[sin2 θW ], σ[a−1] and σ[as ] are de�ned in Eq. 6. This implies that (Eq. 7)

α−11 (MZ) = 59.00± 0.03 , α−12 (MZ) = 29.52± 0.03 , α−13 (MZ) = 8.3± 0.1

29



C The MCLM Algorithm

To determine the global minimum of a function of many variables, a hybrid convergence

algorithm was used: the Monte-Carlo Levenberg-Marquardt (MCLM) algorithm. This

algorithm uses a mixture of stochastic and convergence methods to quickly obtain a global

minimum.

The algorithm runs a number of trials: at the start of each trial, each of the parameters

of the function are randomly set between a given range of possible values. These initial

conditions are then passed to a Levenberg-Marquardt algorithm (see, for example: Jorge

and Wright, Numerical Optimisation, Springer, 2nd Ed. (2006)), which converges to a

local minimum for that set of initial conditions. If the local minimum is lower than any

other minimum calculated so far, it is considered the global minimum.

As the number of trials increases, the likelihood that the current minimum is the global

minimum increases. Although this will never reach certainty, by running enough trials the

con�dence level can be increased.
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